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Abstract

Measurement error models assume that errors occur in both the response

and predictor variables. In using these models, confidence regions and in-

tervals for the model parameters are frequently of interest. We discuss the

solution of the minimization problem resulting from the use of a particular

class of measurement error models, and we develop a procedure for accu-

rately computing an asymptotic form for the covariance matrix that can be

used to construct approximate confidence regions and intervals. We then

show via a Monte Carlo study that the quality of the confidence regions

and intervals constructed from this matrix can be quite good.
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1. Introduction

Parameter estimation and data fitting are among the most common activities in
science, with the ordinary least squares criterion being by far the most frequently
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used. The emergence over the last decade of high quality software for finding the
ordinary least squares solution for nonlinear functions has allowed researchers to
consider more realistic data fitting and parameter estimation models for many
situations. Until recently, however, researchers have not had procedures available
that would take into account the fact that the errors in the observations of the
predictor variable, xi, are frequently significant with respect to the errors in the
observations of the response variable, yi. Such errors can make a substantial
difference in resulting estimations. (See, e.g., [Boggs et al., 1988], and [Fuller,
1987].)

To be specific, ordinary least squares problems arise when the actual (or true)
value of the response variable, denoted by a superscript a, i.e., ya

i , is observed
with some actual but unknowable error ǫa

i , while the predictor variable is observed
without error, i.e., xi = xa

i . Now if we assume that

yi = ya
i − ǫa

i

= f(xa
i ; β

a) − ǫa
i i = 1, . . . , n,

where βa denotes the actual value of the vector of model parameters, then the
ordinary least squares criterion, which minimizes the sum of the squares of the
estimates of the errors in yi, can be applied to obtain an estimate of βa.

If there is also a significant actual, but unknowable, error δa
i in the predictor

variable, so that xi = xa
i − δa

i , then a generalization of the ordinary least squares
criterion is required, since, in this case the model becomes

yi = f(xi + δa
i ; β

a) − ǫa
i i = 1, . . . , n.

This problem goes under various names, including errors in variables, generalized
least squares, orthogonal distance regression, and measurement error models. We
prefer measurement error models in deference to the book of Fuller [1987] that
presents the definitive modern treatment of the problem. We also use the term
orthogonal distance regression since, as we show in §2, it is a useful geometric
description of the problem actually solved.

As in the ordinary least squares case, when using measurement error models
one is frequently interested in constructing confidence regions and/or confidence
intervals for the model parameters. To this end, Fuller [1987] derives the asymp-
totic form of the covariance matrix and uses it in several examples. It is well
known, however, that for nonlinear models in general, and for measurement er-
ror models in particular, confidence regions and intervals constructed using the
covariance matrix are only approximate.
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In this paper we discuss a stable and efficient numerical computation of the
covariance matrix of the estimators of the parameters of measurement error mod-
els, and the use of this matrix to construct confidence regions and/or confidence
intervals. The quality of confidence regions and intervals for nonlinear ordinary
least squares estimators was discussed in an extensive study by Donaldson and
Schnabel [1987]. Here, we report on the quality of the confidence regions and in-
tervals obtained for only four measurement error models. Our study demonstrates
that these approximate regions and intervals can be quite good.

In §2 we give the details of the measurement error model and the formulation
of the minimization problem to be solved. We briefly review the solution of this
problem using the numerically stable and efficient algorithm that is provided by
Boggs et al. [1987] and implemented in ODRPACK [Boggs et al., 1989].

In §3 we review the basis for using the covariance matrix for estimating con-
fidence regions and intervals. In §4 we show how the covariance matrix can be
efficiently computed in a numerically stable manner, as has been done in ODR-
PACK. Finally, in §5, we present the description and results of our Monte Carlo
study of the accuracy of the confidence regions and intervals obtained using the
covariance matrix.

Despite its potential inaccuracy, the covariance matrix is frequently used to
construct confidence regions and intervals for both nonlinear ordinary least squares
and measurement error models because the resulting regions and intervals are in-
expensive to compute, often adequate, and familiar to practitioners. Caution must
be exercised when using such regions and intervals, however, since the validity of
the approximation will depend on the nonlinearity of the model, the variance and
distribution of the errors, and the data itself. When more reliable intervals and
regions are required, other more accurate methods should be used. (See, e.g.,
[Donaldson and Schnabel, 1987], and [Efron, 1985].)

2. Measurement Error Models and Orthogonal Distance

Regression

In this section we show that the measurement error problem can be viewed as a
generalization of the nonlinear ordinary least squares problem. We then briefly
discuss its efficient solution.

The data fitting problem that we consider is composed of an observed data set
(xi, yi), i = 1, . . . , n, and a model that is purported to explain the relationship of
the response variable yi ∈ ℜ1 to the predictor variable xi ∈ ℜm. We assume that
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the response variable is given as a function of the predictor variable and a set of
parameters β ∈ ℜp, i.e.,

ya
i = f(xa

i ; β
a) i = 1, . . . , n,

where f is a smooth function that can be either linear or nonlinear in xi and β, and
where the superscript a denotes the actual (or true) value of the corresponding
quantity.

The explicit measurement error model results when we allow additive errors
in both xi and yi. If we assume that yi = ya

i − ǫa
i and xi = xa

i − δa
i , where

δa
i ∈ ℜm is the actual, but unknown, additive error in the observation xi, then the

observations satisfy

yi = f(xi + δa
i ; β

a) − ǫa
i i = 1, . . . , n.

The term explicit refers to the fact that y can be written directly as a function of
x and β. The more general implicit problem, which has the form

f̄(xi + δa
i , yi + ǫa

i ; β
a) = 0,

is considered in [Fuller, 1987]. The implicit problem is computationally more
difficult, and is not discussed further here. (See, e.g., [Boggs et al., 1987].)

When there are errors in both xi and yi, then it is reasonable to define the
distance from the observation (xi, yi) to the curve f(x; β) as the radius of the
smallest circle centered at (xi, yi) that is tangent to the curve. If the point of
tangency is (xi + δi, yi + ǫi), then, by the Pythagorean theorem, the orthogonal

distance is
r2
i = (f(xi + δi; β) − yi)

2 + δT
i δi, (2.1)

where superscript T denotes transpose.
The observations xi and yi can have unequal precision, however. We compen-

sate for this by generalizing (2.1) to the weighted orthogonal distance,

r̃2
i = (f(xi + δi; β) − yi)

2 + δT
i d2

i δi,

where di ∈ ℜm×m, i = 1, . . . , n, is a set of positive diagonal matrices that weight
each individual component of δi.

We can then approximate βa by finding that β which minimizes the sum of
the squares of the r̃i. That is, we solve

min
β,δ

n
∑

i=1

w2
i

[

(f(xi + δi; β) − yi)
2 + δT

i d2
i δi

]

, (2.2)
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where wi, i = 1, . . . , n, is again a set of nonnegative numbers that allows us to
vary the contribution of the various observations to the sum of squares.

The orthogonal distance regression problem defined by (2.2) can also be ex-
pressed as a nonlinear ordinary least squares problem with n + nm observations
and p + nm unknowns. We designate the unknowns of this ordinary least squares
problem as ηT = (βT, δT

1 , . . . , δT
n ), and the sum of squares to be minimized is

S(η) ≡ G(η)TΩG(η)

where G(η) is the vector valued function whose ith element is defined by

gi(η) =

{

f(xi + δi; β) − yi i = 1, . . . , n,
ηp+i−n i = n + 1, . . . , n + nm,

and Ω ∈ ℜ(n+nm)×(n+nm) is the diagonal weighting matrix given by

Ω =

[

W
D

]

(2.3)

with W ∈ ℜn×n the diagonal matrix with ith component w2
i , and D ∈ ℜnm×nm the

diagonal matrix composed of the individual diagonal matrices w2
i d

2
i . The ordinary

least squares representation of (2.2) is thus

min
η

S(η) = min
η

n+nm
∑

i=1

Ωiigi(η)2 (2.4)

where Ωii denotes the (i, i)th element of Ω.
Boggs et al. [1987] have exploited the special structure of the first derivative of

G(η) with respect to η to create a trust-region, Levenberg-Marquardt algorithm
for solving the orthogonal distance regression problem defined by (2.2). Their
algorithm is both stable and efficient, requiring only O(np2) operations per iter-
ation. A similar ordinary least squares algorithm applied to (2.4) would require
O(n(nm+p)2) operations per iteration. Thus the time per iteration in the [Boggs
et al., 1987] algorithm grows linearly in n while it grows as n3 in an ordinary least
squares code applied to (2.4). The portable Fortran subroutine library ODRPACK
[Boggs et al., 1989] is an implementation of this algorithm. ODRPACK can thus
be used to solve much larger orthogonal distance regression problems than could
be solved using nonlinear ordinary least squares software, even though both solu-
tions are mathematically equivalent. ODRPACK is available free of charge from
the authors.
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3. Linearized Confidence Regions and Intervals

Confidence regions and confidence intervals are commonly computed in statistical
applications to assess a bound on the expected difference between the estimated
value and the actual (or true) value. Methods of constructing 100(1 − α)%, 0 <
α < 1, confidence regions and intervals that are statistically guaranteed to contain
the true value 100(1−α)% of the time are called exact; all other methods are called
approximate. When f(x; β) is nonlinear, construction of exact confidence regions
and confidence intervals is difficult, and so approximate methods are frequently
used (see, e.g., [Donaldson and Schnabel, 1987], or [Draper and Smith, 1981]).

For nonlinear functions, the most easily computed and most widely used of
these approximate methods is the linearization method, which assumes that the
nonlinear function can be adequately approximated at the solution by a linear
model. The adequacy of these approximations will depend on how well the lin-
earized model approximates the actual function over the region defined by the
linearized confidence region and confidence intervals. This, in turn, depends on
the nonlinearity of the function [Bates and Watts, 1980], and the residual variance.
Donaldson and Schnabel [1987] have shown that linearized confidence intervals are
often good in practice, while linearized confidence regions tend to be inadequate.

The linearized confidence regions and intervals for the βs and the δs estimated
by orthogonal distance regression are the same as the linearized regions and in-
tervals that would be obtained if the orthogonal distance regression problem were
solved as a p + nm parameter nonlinear ordinary least squares problem (see §2).
That is, one assumes a linear approximation to the nonlinear function at the
solution is adequate, and that (ǫT, δT

1 , . . . , δT
n )T ∼ N(0, (σa)2Ω−1), where (σa)2

is the true residual variance, estimated by σ̂2 = G(η̂)TΩG(η̂)/(n − p). Then a
100(1−α)% linearized confidence region for ηa can be specified as the region that
contains those values η for which

(η − η̂)TV −1(η − η̂) ≤ pFp,n−p,1−α,

and a 100(1 − α)% linearized confidence interval for ηa
j can be specified as the

interval
|ηj − η̂j | ≤ V

1/2
jj tn−p,1−α/2

where Fp,n−p,1−α is the 100(1 − α)% percentage point for the F distribution with
p and n − p degrees of freedom, tn−p,1−α/2 is the 100(1− α/2)% percentage point
of the t distribution with n − p degrees of freedom, V ∈ ℜ(p+nm)×(p+nm) is the
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estimated linearized covariance matrix for the parameter estimators η̂, and V
1/2
jj

is the square root of its (j, j)th element.
The linearized covariance matrix for the estimators η̂ is the

(p + nm) × (p + nm) matrix

V̂ = σ̂2[G′(η̂)TΩG′(η̂)]−1, (3.5)

where G′(η̂) ∈ ℜ(n+nm)×(p+nm) is the Jacobian matrix with (i, j)th element equal
to ∂gi(η)/∂ηj evaluated at η̂. (We assume that G′(η̂) is of full rank, so that
[G′(η̂)TΩG′(η̂)] is nonsingular.) In the next section, we show how the covariance
matrix defined by (3.5) can be computed in a numerically stable way.

For nonlinear ordinary least squares, the linearization method is asymptoti-
cally correct as n → ∞. (See, e.g., [Jennrich, 1969].) For the orthogonal distance
regression problem, this method has been shown to be asymptotically correct as
σa → 0 [Fuller, 1987]. The difference between the conditions of asymptotic cor-
rectness can be explained by the fact that, as the number of observations increases
in the orthogonal distance regression problem, one does not obtain additional in-
formation for δi. Thus, for orthogonal distance regression problems, one would
expect the portion of the covariance matrix concerned with β to yield linearized
regions and intervals as accurate as those computed for nonlinear ordinary least
squares problems, while one would expect the regions and intervals for δa

i to be
less accurate.

Note also that V̂ is dependent upon the weight matrix Ω, which must be
assumed to be correct, and cannot be confirmed from the orthogonal distance
regression results. Errors in the wi and di that form Ω will have an adverse affect on
the accuracy of V̂ and its component parts. In §5, we present the results of a Monte
Carlo experiment examining the accuracy of the linearized confidence intervals for
four measurement error models. The results indicate that the confidence regions
and intervals for δa

i are not as accurate as those for βa. These results also show that
errors in Ω can have an adverse affect on both confidence regions and intervals.

4. Computing the Covariance Matrix V̂

The most straightforward computation of a quantity is often not the most numer-
ically stable. Although V̂ is defined as

V̂ = σ̂2[G′(η̂)TΩG′(η̂)]−1,
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we would not compute it by first calculating G′(η̂)TΩG′(η̂) and then inverting the
resulting (p + nm) × (p + nm) matrix because such a procedure would introduce
unnecessary numerical errors that could severely jeopardize the accuracy of V̂ . In
this section, we present a numerically stable and efficient method for constructing
V̂ .

For any A ∈ ℜn×p with linearly independent columns, it is generally recom-
mended that the matrix [ATA]−1 be computed by first constructing the QR
factorization of A, i.e., A = QR, where Q ∈ ℜn×n has orthonormal columns,
and R ∈ ℜn×p is upper triangular with positive diagonal elements. If we let
R̃ ∈ ℜp×p be the upper p × p portion of R, then ATA = RTR = R̃TR̃ and
[ATA]−1 = R̃−1(R̃−1)T. Since R̃ is triangular, its inverse can be accurately com-
puted, thus allowing an accurate computation of [ATA]−1. (See, e.g., [Dongarra
et al., 1979].)

The computation of V̂ can be further improved, however, since analysis of
G′(η) shows that it has the special structure

[

J U
0 I

]

where J = F ′(β̂), and U ∈ ℜn×nm is the “staircase” matrix
















u1,1 . . . u1,m

u2,m+1 . . . u2,2m
...

un−1,1+m(n−2) . . . un−1,m(n−1)

un,1+m(n−1) . . . un,nm

















with

ui,j = ∂gi(η)/∂ηp+j

=

{

∂f(xi + δi; β)/∂δi,j−(i−1)m if 1 + (i − 1)m ≤ j ≤ im
0 otherwise

for i = 1, . . . , n and j = 1, . . . , nm. Thus,

V̂ = σ̂2[G′(η̂)TΩG′(η̂)]−1

= σ̂2

[[

JT 0
UT I

] [

W 0
0 D

] [

J U
0 I

]]

−1

= σ̂2

[

JTWJ JTWU
UTWJ UTWU + D

]

−1

.
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We can partition V̂ as

V̂ =

[

V̂β V̂βδ

V̂δβ V̂δ

]

(4.6)

where V̂β ∈ ℜp×p is the covariance matrix of the estimated β̂s, V̂δ ∈ ℜnm×nm is the

covariance matrix of the estimated δ̂s, and V̂βδ = V̂ T
δβ ∈ ℜp×nm gives covariances

between the βs and the δs. The component parts of V̂ are thus

V̂β = σ̂2

[

JT

(

W − WU
[

UTWU + D
]

−1
UTW

)

J
]

−1

V̂βδ = −σ̂2V̂β(JTWU)
[

UTWU + D
]

−1

V̂δβ = V̂ T
βδ

V̂δ = −σ̂2
[

UTWU + D
]

−1
(

I + (UTWJ)V̂β(JTWU)
[

UTWU + D
]

−1
)

.

The structural properties of the matrices appearing in (4.6) can be exploited
to compute V̂ accurately and efficiently. In Boggs et al. [1987], they define

P−1 ≡ [UTWU + D]−1

and

ωi ≡
nm
∑

j=1

u2
i,j

Dj,j
i = 1, . . . , n.

They then show that

P−1 = D−1 − D−1UTW 1/2MW 1/2UD−1 (4.7)

where M ∈ ℜn×n is the diagonal matrix defined by

M ≡ diag
{[

1

1 + ωi

]

, i = 1, . . . , n
}

.

Because D and W are diagonal, P−1 can be easily computed. Boggs et al. [1987]
also show that

W − WU [UTWU + D]−1UTW = M.

Thus, we can define the linearized covariance matrix as

V̂β = σ̂2
[

JT
(

W − WU
[

UTWU + D
]

−1
UTW

)

J
]

−1

= σ̂2
[

(M1/2J)T(M1/2J)
]

−1
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which can be stably computed using the QR factorization techniques described at
the beginning of this section. This result and (4.7) allow the efficient formation
of V̂βδ, V̂δβ and V̂δ.

The covariance matrix V̂β of the estimators β̂ provided by ODRPACK is com-
puted using the above technique; in our experience, users are seldom interested
in V̂δ or V̂βδ. If necessary, however, the full covariance matrix V̂ for all of the
estimators η̂ either can be computed using the above equations, or can be “auto-
matically” obtained from most ordinary least squares software (including ODR-
PACK) by solving the orthogonal distance regression problem as the ordinary
least squares problem defined by (2.4).

5. Computational Experience

Given the ability to define and construct linearized confidence regions and intervals
for the parameters of an orthogonal distance regression problem, it is reasonable
to ask how good these regions and intervals are. In this section, we present the
results of a Monte Carlo study that indicates that, at least in some cases, linearized
confidence regions and intervals are quite good.

A Monte Carlo experiment allows us to examine the properties of confidence
regions and intervals for a given problem. For such an experiment, we define
the observed coverage, γ̂α, of a constructed confidence interval or region as the
percentage of the time that true value lies within the interval or region constructed
for the parameter. The nominal coverage of such a region or interval is 100(1−α)%.
When the number of realizations of the data is large, then the observed coverage
will reflect the actual (or true) coverage, γa

α, of the given region or interval. The
actual coverage may or may not be the same as the nominal coverage, however. By
comparing γ̂α with 100(1−α)%, we can thus assess the quality of an approximate
confidence interval or region.

Donaldson and Schnabel [1987] examined linearized confidence intervals and
regions for a number of nonlinear ordinary least squares models and data sets.
They found that the linearization method is not always adequate. Their results
showed that, while the linearized confidence intervals were generally good, the
linearization method confidence regions frequently resulted in observed coverage
that was far lower than nominal.

We would not expect an exhaustive study of orthogonal distance regression
problems to produce results that were substantially different than those found
by Donaldson and Schnabel [1987]. Thus we do not attempt such a large scale
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study. Here we present the results of a Monte Carlo study of only four data sets.
These results demonstrate that the linearized confidence intervals and regions can
be quite reasonable when Ω is known precisely. When Ω is not known precisely,
however, the study shows that the observed coverage of the linearized regions and
intervals can differ significantly from the nominal value.

Our first example is from Fuller [1987, example 3.2.2, p. 230-238]. The data
(xi, yi) are the percent saturation of nitrogen gas in a brine solution forced into
the pores of sandstone, and the observed compressional wave velocity of ultrasonic
signals propagated through the sandstone, respectively. These data are assumed
to be modeled by

f(xi + δi; β) = β1 + β2(e
β3(xi+δi) − 1)2.

Fuller analyzed the original data assuming a measurement error model with Da =
I. For our Monte Carlo experiment, we assigned

βa = (1264.65,−54.02,−0.0879)T,

Xa = (0.0, 0.0, 5.0, 7.0, 7.5, 10.0, 16.0, 26.0, 30.0, 34.0, 34.5, 100.0)T,

wa
i = 1, i = 1, . . . , 12

da
i = 1, i = 1, . . . , 12

σa =
√

2.38 .

The values selected for βa and σa are those estimated by Fuller using the original
data with Ω = I. The values xa

i , i = 1, . . . , n, are the observations from the
original experiment. Fuller notes that it is reasonable to believe that the error
variance for x = 0 and x = 100 is smaller than the error variances for the remaining
observations. For our Monte Carlo experiment, we assume that x1, x2 and x12 are
observed without error, and thus fix δa

1 = δa
2 = δa

12 = 0.
Our second example is from Ratkowsky [1983, example 6.11, p. 119-120]. The

response variable purports to represent resistance of a thermistor and the predictor
variable temperature. Ratkowsky, however, notes that since the resistance of a
thermistor increases with temperature, the response variable probably represents
conductance. The model used to describe the original data is

f(xi; β) = −β1 +
β2

xi + β3

.

The analysis by Ratkowsky assumed that there was no error in the response vari-
able; for our results, we assume a measurement error model with da

i = 1/10, i =
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1, . . . , n. For this example, we assigned

βa = (5.0, 6150.0, 350.0)T,

Xa = (45 + 5i, i = 1, . . . , 16)T,

wa
i = 1, i = 1, . . . , 16

da
i = 1/10, i = 1, . . . , 16

σa = 0.0002 .

The values xa
i , i = 1, . . . , n, are the observations from the original experiment.

The other values are approximately those obtained by Ratkowsky in his analysis.
The third example is problem E, chapter 10 of Draper and Smith [1981, p. 518-

519]. This example models the relationship between pressure and temperature in
saturated steam using

f(xi; β) = β1 · 10β2xi/(β3+xi).

Draper and Smith assumed that there was no error in the temperature observa-
tions; for our results, we assume a measurement error model with da

i = 10, i =
1, . . . , n. We assigned

βa = (4.18, 6.91, 205.0)T,

Xa = (0, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 100, 105)T,

wa
i = 1, i = 1, . . . , 14

da
i = 10, i = 1, . . . , 14

σa = 1.2 .

The values xa
i , i = 1, . . . , n, are the observations from the original experiment.

The other values are approximately those obtained using the measurement error
model for the original data with da

i = 10.
The data for the fourth example were collected as part of a psychophysical

experiment to evaluate the ability of human subjects to perceive a visual signal as
a function of the intensity of the signal. The predictor variable, xi, represents the
signal intensity and the response variable, yi, is the fraction of the total number
of trials during which a particular subject correctly identified the presence of the
signal. Each signal level was repeated 80 times. A sigmoidal curve belonging to
the family

f(xi; β) =
β1

[1 + eβ2−β3(xi+δi)]β4
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is used to relate y to x. We assigned

βa = (0.936, 3.400, 339.370, 0.954)T,

Xa = (0.003, 0.007, 0.008, 0.010, 0.015, 0.026, 0.038, 0.060, 0.065)T,

wa
i = (ya

i · (1 − ya
i )/80)−1/2 , i = 1, . . . , 9

da
i =

30 (ya
i · (1 − ya

i )/80)1/2

xa
i

, i = 1, . . . , 9

σa = 1.0 .

The values xa
i , i = 1, . . . , n, are the observed values from the original experiment.

The weights wi are calculated as the inverses of the standard deviations of the yi.
The standard deviations of the errors in the measurements of the various signal
levels are known from experience to be proportional to the value of the signal
itself with a proportionality constant of 1/30. The da

i are computed accordingly.
These 4 examples are plotted in figures 1 through 4, respectively. The graphs

display f(x; βa) evaluated over the range of the values xa
i , i = 1, . . . , n. The

n points (xa
i , y

a
i ) are indicated by the “dots” on each curve. For each of these

models, we assume that the true values (xa
i , y

a
i ) are fixed; thus, we are considering

functional models in the terminology of Kendall and Stuart [1979].
We construct 500 sets of “observed” data (xi, yi) for each model using

xi = xa
i − δa

i i = 1, . . . , n

yi = f(xa
i ; β

a) − ǫa
i i = 1, . . . , n.

The errors (ǫa
1, . . . , ǫ

a
n, δ

a
1 , . . . , δ

a
n) ∼ N(0, (σa)2[Ωa]−1), are generated using the

Marsaglia and Tsang [1984] pseudonormal random number algorithm as imple-
mented by James Blue and David Kahaner of the National Institute of Standards
and Technology. We construct Ωa using (2.3) and

W a = diag{(wa
i )

2, i = 1, . . . , n}
Da = diag{(wa

i d
a
i )

2, i = 1, . . . , n}.

For each of the 500 realizations of the data, we solve for η̂ =
(β̂1, . . . , β̂p, δ̂1, . . . , δ̂n)T using the orthogonal distance regression software library
ODRPACK [Boggs et al., 1989] and the ordinary least squares representation of
the problem. (Recall that ODRPACK only computes the covariance matrix for
the estimators β̂ when solving an orthogonal distance regression problem. Using
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the ordinary least squares representation of the problem allows us to easily ob-
tain the covariance matrix for the all of the estimators η̂.) The computations are
performed in double precision Fortran on a Sun Workstation.

Initially, η is set to ηa = (βa
1 , . . . , β

a
p , δ

a
1 , . . . , δ

a
n)T. This is reasonable, since

we are interested in assessing the reliability of the confidence intervals and not
in ODRPACK’s ability to obtain a solution quickly. The results presented would
not change in any significant way if we were to choose starting values within some
small enough region about the true values: given a starting value “close enough” to
a local optimum, that local optimum will be located by ODRPACK to whatever
accuracy is specified in the calling sequence. Clearly, not every starting value
will necessarily produce the same local solution. This issue of non-uniqueness is
addressed in Boggs et al. [1987]. Here, our use of the true parameter value as the
starting value reduces the probability that alternate local optima will be found
by the regression procedure, and therefore that the confidence interval and region
results will be confounded by the existence such alternate optima. We recognize,
however, that in practice one may need to examine the region about the solution
for other local minimum.

Default values are used for all ODRPACK arguments, except for the maximum
number of iterations, which is set to 100. The Jacobian matrices are computed
using finite differences. We expect that use of analytic derivatives would produce
a slight improvement in the results reported here.

The covariance matrix is dependent upon Ω. Clearly, however, the W and
D that make up Ω are not always known. Of particular interest for orthogonal
distance regression problems is the case where the values of di, i = 1, . . . , n, used
to determine D are only approximate. In addition to reporting the observed
coverage for Ω constructed using da

i and wa
i , we therefore also report the observed

coverage when the 500 replications are solved using Ω constructed with di = da
i /10,

di = da
i /2, di = 2da

i , di = 10da
i , and di = ∞da

i , the latter indicating an ordinary
least squares solution in which all values of δi are forced to zero.

The observed coverages for these problems are shown in Tables 1, 2, 3, and
4. The confidence region coverage when di is correct is surprisingly good when
compared with that observed by Donaldson and Schnabel [1987]. We conjecture
that this is due to our choice of examples, and is not a property of orthogonal
distance regression in general. In their study, Donaldson and Schnabel frequently
found that the observed coverage for linearized confidence regions was less than
80% of the expected nominal coverages, a difference that many, if not most, users
would find unacceptable. Our results show such a significant degradation in the
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coverage of the linearized confidence regions when di is incorrect by even a factor
of 2.

These tables indicate that the confidence interval coverage when di is correct
is very good. In addition, the confidence intervals for βa are still quite good when
di is known only to within a factor of 2, but when di is under-estimated by a factor
of 10, we see a significant degradation for two of our four examples. There is also
a significant degradation in the confidence interval coverage for δa

i when di is not
known precisely. As expected, our results show that the confidence intervals for
βa are in general more reliable than those for δa

i .
One surprising result is that, for confidence intervals for βa, over-estimation of

di is preferable to under-estimation. For δa
i , the opposite is true. We believe that

this occurs because when di is over-estimated, we overly restrict the size of δi and
thus prevent δ̂i from being “close enough” to δa

i to allow the confidence intervals
and regions to include δa

i . When we under-estimate di, on the other hand, we
artificially reduce the size of the residual variance, σ̂2, and thus the size of the
covariance matrix and the resulting confidence intervals for βa.

We conclude from this small study that for at least some orthogonal distance
regression problems, confidence regions and intervals constructed using the co-
variance matrix do have some validity, especially when di is known at least to
within a factor of 2. We recognize, however, that for other problems such inter-
vals and regions may be very inaccurate. We also recognize that there is nothing
better that can be easily reported in their place. Thus, the linearization method
will continue to be the most frequently implemented method in production least
squares software. We therefore advocate the use of linearized confidence intervals
and regions for measurement error problems in the same spirit, and with the same
caveats, that they are used for nonlinear ordinary least squares problems.

Finally, this study illustrates how the observed coverage of the linearized confi-
dence intervals and regions for the parameters of any model can be easily computed
using a Monte Carlo study and an efficient orthogonal distance regression package
such as ODRAPCK.

Acknowledgement. The authors thank H. Iyer, Colorado State University,
for many useful discussions and comments concerning this work, and for providing
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Table 1: Fuller Example 3.2.2

Observed Coverage
for Nominal 95% Confidence Regions and Intervals

di = 1
10

da
i di = 1

2
da

i di = da
i di = 2da

i di = 10da
i di = ∞da

i

(OLS)
c.r. for ηa 16.8 78.4 93.6 86.6 0.0 —
c.r. for βa 42.8 85.0 93.8 96.6 95.4 95.2
c.r. for δa 18.4 82.6 93.4 81.2 0.0 —
c.i. for βa

1 50.0 84.4 93.8 97.2 97.4 97.4
c.i. for βa

2 51.4 85.8 94.6 96.0 96.8 96.6
c.i. for βa

3 89.4 92.2 93.8 94.4 95.2 95.6
c.i. for δa

3 68.8 89.4 96.0 92.4 25.4 —
c.i. for δa

4 77.8 89.6 93.6 92.4 33.0 —
c.i. for δa

5 80.0 89.8 94.4 91.8 27.6 —
c.i. for δa

6 85.0 91.2 97.0 93.0 31.0 —
c.i. for δa

7 88.2 92.6 94.4 87.4 27.8 —
c.i. for δa

8 93.0 93.8 92.2 83.6 25.8 —
c.i. for δa

9 89.0 96.2 95.8 85.8 28.6 —
c.i. for δa

10 90.0 94.6 93.4 82.8 31.2 —
c.i. for δa

11 89.0 95.4 93.4 85.6 30.6 —



Table 2: Ratkowsky Example 6.11

Observed Coverage
for Nominal 95% Confidence Regions and Intervals

di = 1
10

da
i di = 1

2
da

i di = da
i di = 2da

i di = 10da
i di = ∞da

i

(OLS)
c.r. for ηa 0.0 99.6 96.2 28.0 0.0 —
c.r. for βa 94.6 93.6 93.4 93.4 93.4 93.4
c.r. for δa 0.0 100.0 96.0 21.4 0.0 —
c.i. for βa

1 95.4 95.2 95.2 95.0 95.0 95.0
c.i. for βa

2 95.4 95.2 95.2 95.0 95.0 95.0
c.i. for βa

3 95.4 95.2 95.2 95.0 95.0 95.0
c.i. for δa

1 97.8 99.6 95.0 69.4 14.4 —
c.i. for δa

2 87.8 99.0 96.2 74.2 18.2 —
c.i. for δa

3 82.8 99.8 94.6 69.2 17.6 —
c.i. for δa

4 73.0 99.0 95.2 70.0 15.4 —
c.i. for δa

5 73.8 99.4 93.2 70.8 17.4 —
c.i. for δa

6 71.4 99.2 94.4 74.4 16.4 —
c.i. for δa

7 75.0 99.2 95.4 75.0 15.4 —
c.i. for δa

8 73.8 99.6 95.2 73.8 17.6 —
c.i. for δa

9 72.2 99.2 95.2 72.6 18.2 —
c.i. for δa

10 75.4 99.6 96.4 70.6 19.0 —
c.i. for δa

11 69.4 98.2 94.2 74.2 18.8 —
c.i. for δa

12 69.8 99.0 94.4 72.6 20.6 —
c.i. for δa

13 69.6 99.0 95.8 68.2 16.8 —
c.i. for δa

14 76.2 99.0 94.0 71.0 14.6 —
c.i. for δa

15 84.0 99.8 95.4 73.0 14.4 —
c.i. for δa

16 95.6 99.6 95.0 70.6 17.0 —



Table 3: Draper and Smith Problem 10.E

Observed Coverage
for Nominal 95% Confidence Regions and Intervals

di = 1
10

da
i di = 1

2
da

i di = da
i di = 2da

i di = 10da
i di = ∞da

i

(OLS)
c.r. for ηa 13.2 85.0 92.4 72.2 0.0 —
c.r. for βa 80.4 92.6 90.8 87.4 78.0 76.8
c.r. for δa 28.6 94.0 94.8 68.0 0.0 —
c.i. for βa

1 71.8 89.8 94.8 96.0 96.6 96.4
c.i. for βa

2 86.6 93.2 94.0 91.8 89.4 89.6
c.i. for βa

3 82.2 92.6 95.0 93.6 93.0 92.8
c.i. for δa

1 100.0 98.8 94.4 82.2 29.2 —
c.i. for δa

2 99.8 99.2 93.2 82.2 30.0 —
c.i. for δa

3 92.6 99.2 94.6 78.8 25.0 —
c.i. for δa

4 77.2 98.2 94.4 79.4 25.4 —
c.i. for δa

5 82.6 97.0 94.4 79.8 26.2 —
c.i. for δa

6 93.8 97.4 95.4 81.0 25.8 —
c.i. for δa

7 96.8 96.0 96.0 83.4 25.8 —
c.i. for δa

8 96.2 97.2 95.6 83.2 27.6 —
c.i. for δa

9 98.2 97.0 96.0 85.6 23.8 —
c.i. for δa

10 98.2 96.4 95.8 88.2 27.8 —
c.i. for δa

11 99.4 96.0 95.4 90.2 28.0 —
c.i. for δa

12 99.6 97.4 94.0 87.0 26.8 —
c.i. for δa

13 100.0 98.6 95.2 85.6 25.2 —
c.i. for δa

14 99.8 98.4 94.8 86.6 26.8 —



Table 4: Psychophysical Example

Observed Coverage
for Nominal 95% Confidence Regions and Intervals

di = 1
10

da
i di = 1

2
da

i di = da
i di = 2da

i di = 10da
i di = ∞da

i

(OLS)
c.r. for ηa 46.6 59.4 57.4 37.6 0.0 —
c.r. for βa 53.8 52.0 48.2 47.6 46.4 46.4
c.r. for δa 98.0 100.0 95.8 59.4 0.0 —
c.i. for βa

1 86.0 94.8 95.0 95.2 95.4 95.4
c.i. for βa

2 100.0 99.8 99.8 99.8 99.8 99.8
c.i. for βa

3 93.4 96.6 95.8 95.4 95.4 95.4
c.i. for βa

4 99.8 93.0 90.2 89.4 89.0 89.0
c.i. for δa

1 100.0 99.6 95.0 75.6 22.0 —
c.i. for δa

2 99.8 99.6 96.4 78.2 22.4 —
c.i. for δa

3 100.0 99.4 95.2 76.4 20.2 —
c.i. for δa

4 100.0 99.4 96.4 75.8 19.4 —
c.i. for δa

5 100.0 99.8 95.0 73.6 18.2 —
c.i. for δa

6 99.8 99.4 95.0 75.0 18.8 —
c.i. for δa

7 98.8 99.6 95.6 77.2 17.8 —
c.i. for δa

8 100.0 99.4 94.8 72.2 20.4 —
c.i. for δa

9 100.0 99.4 95.2 77.6 21.0 —


